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Abstract

In this research we focused on intertwined low-level motion planning and high-level task assignment
for a cooperating team of heterogeneous unmanned assets. As a case study we are envisioning the
scenario where a team of unmanned aerial vehicles (UAVs) has to query a set of unattended ground
sensors (UGSs), positioned along a road network. In such a scenario the UAV team cooperates in
searching and prosecuting ground target intruders, identified by the ground sensors. Of particular
interest to us was the cooperation and coordination between the unmanned aerial vehicles in
devising their assignments and trajectories.

The research was conducted in two phases. In the first phase we have concentrated on the
motion planning and task assignment aspects of the problem where a single UAV has to decide on
the query ordering of the UGSs, given constraints on its motion. This problem was formalized as
the Dubins travelling salesman problem (TSP). The contributions of the study in the first phase
can be summarized as follows:

• Two new algorithms for the Dubins TSP were developed that are applicable to both ordered
and unordered sets of targets. Instead of being decoupled, the combinatorial and motion
planning aspects of the Dubins TSP were treated in an integrated manner and no assumptions
were made on the magnitude of the intercity distances. The two algorithms complement each
other in terms of their range of applicability with regard to the size of the problem.

• The first algorithm — dubbed “k-step look-ahead algorithm” — stems from the formulation
of the Dubins TSP as a minimum-time control problem and is suitable for obtaining short
tours when the number of cities is relatively small.

• The second algorithm is an adaptation of the classic 2-Opt algorithm for the TSP and can
be applied to large instances of the Dubins TSP.

• Analytical bounds were derived for the lengths of the tours and for the complexity of the
problem. Monte Carlo simulations were used to investigate and compare between the per-
formance of the proposed algorithms and existing algorithms from the literature.

In the second phase of the research we have paid special attention to the coupled motion
planning and task assignment problem for groups of UAVs and UGSs. The specific problem
considered includes allocating the group of UAVs to a given set of UGSs while accounting for
the vehicles kinematic constraints and avoiding collision with obstacles scattered in the vehicles’
environment. The contributions of the study in the second phase can be summarized as follows:

• To account for the effect of a diminishing return with time for information collected at
each UGS, each UGS is assigned a specific time dependent benefit. The benefit represents
the UGS importance and priority, possibly assigned by a human operator. The time varying
priority issue is addressed by incorporating the vehicles’ feasible path length, which represents
the vehicles’ response time, and the targets’ properties as an inherent part of the problem
formulation.

• The integrated problem of task assignment and motion planning was posed in the form of a
decision tree and two solution algorithms were developed. An exhaustive search algorithm
which improves over run time and provides the best solution encoded in the decision tree,
and a greedy algorithm that provides a quick feasible solution (also used as an upper bound).
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• Although the greedy algorithm provides a sub-optimal solution, it is useful in large scale real
time scenarios, where computational running time is important. The exhaustive algorithm
can provide an immediate solution that improves over run time for large scale scenarios, or
it can be used in off-line scenarios.

• Using simulations the performance of the algorithms was compared and evaluated, and the
influence of the time varying targets’ priority on the task allocation process was demonstrated
and investigated.

The results of the research have appeared in 2 conference publications, 1 submitted journal pub-
lications, and 1 journal paper that is currently in preparation stages.

The published conference papers are:

• Pantelis, I. and Shima, T., “A Task and Motion Planning Algorithm for the Dubins Travelling
Salesperson Problem”, Proceedings of the 19th IFAC World Congress, Cape Town, South
Africa, August 2014.

• Gottlieb, Y. and Shima, T., “Task Assignment and Motion Planning in the Presence of
Obstacles and Prioritized Targets”, Proceedings of the 54th Israel Annual Aerospace Conference,
February 2014.

The following paper has been submitted to Automatica. It is currently in its second round of
review:

• Pantelis, I. and Shima, T., “Motion Planning Algorithms for the Dubins Travelling Salesperson
Problem”, 2014.

The following paper is in preparation to be submitted to the journal Sensors as an invited
feature paper:

• Gottlieb, Y. and Shima, T., “UAVs Task and Motion Planning in the Presence of Obstacles
and Prioritized Targets”, 2014.
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Introduction

This research is concerned with intertwined low-level motion planning and high-level task assign-
ment for unmanned aerial vehicles (UAVs). As a case study, the scenario where a team of UAVs
has to query a set of unattended ground sensors (UGSs) is envisioned. The problem can be ex-
plained using the following example: A network of Unattended Ground Sensors (UGS) and a team
of unmanned vehicles are used to prevent intruders’ access to a restricted zone (base defense) [45].
The UGS network is deployed at critical road junctions, when a sensor is triggered by an intruder,
the location is sent as a target to be visited by the team of unmanned vehicles. In case there
are multiple intrusions at different times, the group of vehicles must be allocated according to the
vehicles’ response time (time to target) and the target’s priority, which can be based on the order
of the UGS triggering time or on the location of the sensor. The target (sensor) priority is time
dependent since as time passes, the intruder may advance to a different location and the target
relevance decreases.

1.1 Single Vehicle - Multiple Targets

In the first phase of our research we have concentrated on the motion planning and task assignment
aspects of the problem where a single UAV has to decide on the query ordering of the multiple
UGSs, given constraints on its motion. This problem was formalized as the Dubins travelling
salesman problem (TSP).

The Dubins Travelling Salesperson Problem (DTSP) and its variants [8, 12, 18, 21, 22, 24, 25]
are useful abstractions for the study of problems related to motion planning and task assignment
for uninhabited vehicles. As in the case of the classic Euclidean Travelling Salesperson Problem
(ETSP) in R

2 [19], the sought after solution to the DTSP is a tour of minimum length that
passes through every city (target), however, in the case of the DTSP, the tour is required to be a
planar C1 regular curve whose curvature is bounded above by a given constant. The additional
requirements on the regularity and the curvature of the tour have a fundamental implication on
the very nature of the problem. Specifically, the ETSP belongs to the realm of combinatorial
optimisation, whereas the DTSP does not. A precise formulation of the DTSP is given below,
however the crux of the matter is that, in the case of the DTSP, even if the order of the targets
is given and fixed, the length of the tour depends on the heading of the Dubins vehicle when it
passes through each target (in other words, the slope of the tour at each target). Therefore, the
solution space for the DTSP has the cardinality of the continuum.1A possible remedy is to directly
discretise the problem; that is, for each target, to consider h candidate headings that partition
the interval [0, 2π) uniformly into h subintervals. The resulting discrete DTSP (DDTSP) can be
cast as an integer linear program (ILP) that can be solved using existing, optimised solvers and is

1Although the solution space consists of closed, planar curves, to each n-tuple (θ1, . . . , θn) ∈ S
n of headings,

where n is the number of cities, corresponds a finite number of tours of the same minimum length.
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amenable to analytic tools from the theory of ILP. The discretisation approach has been employed
in [7] to prove tight upper bounds for the optimal solution (to the DTSP) that depend only on the
number of targets and the norm of the partition of [0, 2π). The bounds are tight in the sense that
they can be achieved by instances of the DTSP chosen by an adversary. On the other hand, the
DDTSP is equivalent to a generalised asymmetric travelling salesperson problem (GATSP) [13]
with n clusters and 1+h(n− 1) cities2 and it is, therefore, of interest to keep the value of h small.
However, the minimum-time function for the Dubins dynamics is discontinuous (in other words,
an infinitesimal change of the value of a heading can cause the overall length of the tour to jump to
a higher value) and, hence, a large value of h is necessary if an optimal solution to the DTSP is to
be approximated. One way to address this issue is to observe that the DTSP lends itself naturally
to the application of a receding horizon principle. Such an approach is taken in [17]. The k-step
look-ahead (k-step LAA) algorithm in Section 2.3 also relies on a receding horizon principle; the
essential difference between the k-step LAA and the algorithm in [17] is that, in [17], the order of
the targets is considered given and fixed, whereas in the present paper it is one of the unknowns
of the problem. With regard to the DDTSP, it is shown in Sections 2.3 and 2.5 that the k-step
LAA can reduce the search for a feasible DTSP tour to a combinatorial problem that is smaller
in size than the DDTSP3 (depending on the choices of h and k), while achieving a substantial
improvement (by 50%, in certain cases) over algorithms that rely on a solution to the ETSP to
find a feasible tour for the DTSP [22].

To address the problem of solving instances of the DTSP that are too large for the k-step
LAA to be practical, a local improvement algorithm is presented in Section 2.4. The idea behind
the algorithm is borrowed from the literature on the ETSP where it is known as the 2-Opt algo-
rithm [15]. Hence, we call the algorithm of Section 2.4 the “2-Opt k-step look-ahead algorithm”
(2-Opt k-step LAA) and establish an upper bound on the length of DTSP tours it generates, under
a non-restrictive assumption on the initial tour. When the order of the targets is fixed and the
k-step LAA is only applied to find an admissible DTSP tour, we use the name k-step ETSP-LAA
to distinguish such cases from those where the order of the targets is also unknown.

Once an assignment of a heading to each target has been made, several existing algorithms—
e.g., approximation algorithms for the Asymmetric Travelling Salesperson Problem (ATSP)—
can be directly applied to find a feasible tour for the DTSP. For the purpose of illustration and
comparison, the k-step LAA is combined with Dijkstra’s algorithm to generate the simulations in
Section 2.5. Given the sheer size of the combinatorial problem to be solved and that Dijkstra’s
algorithm is a greedy algorithm that returns an optimal solution (a shortest path on a graph), this
combination limits the applicability of the overall algorithm to cases with a small number of cities
(these statements are quantified in later sections) and leaves open for further investigation the
fusion of the k-step LAA with other algorithms. Nevertheless, there are application areas where a
small number of targets does not represent an unrealistic scenario.

1.2 Multiple Vehicles - Multiple Targets

In the second phase of the research we have paid special attention to the coupled motion planning
and task assignment problem for groups of UAVs and UGSs. The specific problem considered
includes allocating the group of UAVs to a given set of UGSs while accounting for the vehicles

2The city of origin has its heading fixed to the initial heading of the vehicle. To every other city corresponds a
cluster with h nodes—as many as the candidate headings.

3At the cost of computing the heading at each city, rather than assigning it arbitrarily.
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kinematic constraints and avoiding collision with obstacles scattered in the vehicles’ environment.
The task assignment problem is usually coupled with the motion planning problem as the as-

signments allocation process depends on the path length, and the path length depends on the
vehicle’s assignments. This coupling issue is addressed in the unmanned vehicles cooperative mul-
tiple task assignment problem (CMTAP)[26]. The CMTAP includes a scenario in which multiple
unmanned vehicles perform multiple tasks on stationary targets. Different approaches based on
customized combinatorial optimization methods were employed to solve this problem, including
the mixed integer linear programming (MILP) [27, 28], the capacitated transhipment network
solver [29, 30], genetic algorithms [31, 32, 26] and tree search methods [33, 34]. The presented
works account for the vehicles’ constraints but they simplify the problem by assuming that the
environment is obstacle free. Most of the studies which take into account obstacles, address only
the motion planning subproblem between an initial and final configuration. They include methods
such as the RRTs method [35], probabilistic roadmaps [36] and kinodynamic method [37].

One of the main properties of the problem stated above is the assumption that the targets
have the same characteristics and differ only in their position. In many scenarios, each target in
the targets set has unique attributes which include different importance and priority. The targets’
priority may also vary in time depending on the specific scenario. Cases in which targets are
assigned with a priority value were studied in [42, 43, 44]. The problems presented in these studies
include a task allocation process that maximizes the service provided to each target based on the
target’s parameters and the vehicles’ capabilities (fuel, payload). The targets priority is addressed
by using an objective function which includes a constant parameter describing the priority value.
In these problems the vehicles’ constraints are not taken into account and the environment is
assumed to be free of obstacles, which may lead to infeasible vehicles’ trajectories.
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Single UAV scenarios

In the first phase of our research we have investigated the problem where a single UAV, modeled
as a Dubins vehicle, has to decide on the query ordering of the multiple UGSs. This problem is
formalized next as the Dubins travelling salesman problem (TSP).

2.1 Problem Formulation

Consider the control-affine system

γ′(t) = X(γ(t)) + u(t)Y (γ(t)) (Σ)

on M = R
2 × S

1, where X, Y ∈ ΓωTM are the real analytic vector fields with coordinate repre-
sentations1

X(x, y, θ) = (cos θ, sin θ, 0) and Y (x, y, θ) = (0, 0, 1) .

The admissible controls are the locally integrable maps u : R ⊃ I ∋ t 7→ u(t) ∈ [−1/ρ, 1/ρ] ⊂ R,
where ρ is a fixed, positive, real number, referred to as the minimum turn radius. Given a
control u, the corresponding locally absolutely continuous trajectory of (Σ) is denoted by γ. The
projection on R

2 of a trajectory γ will be called the path that corresponds to γ. An optimal
path is the projection of an optimal trajectory. A trajectory γ : R ⊃ [a, b] → M of (Σ) is said
to be closed if γ(a) = γ(b) and the path that corresponds to a closed trajectory is called a tour.
If I is a subinterval of R, the space of locally absolutely continuous curves in M defined on I is
denoted by W 1,1

loc (I;M).
The control system (Σ) can be viewed as the kinematic model of a point that moves with

constant, unit speed, along a planar curve whose curvature is bounded above by 1/ρ. We shall
abide by the common convention of referring to (Σ) as the “Dubins vehicle” and to the following
minimum-time control problem as the Dubins Travelling Salesperson Problem (DTSP).

DTSP: Let n be a positive integer. Given a point p ∈ M and n submanifolds (targets) of
the form Ni = {(xi, yi)} × S

1 ⊂ M , where (xi, yi) ∈ R
2 and i ∈ {1, . . . , n}, minimise the time

T > 0 over the set Γcl
Σ(p,N1, . . . , Nn) of closed trajectories γ ∈ W 1,1

loc ([0, T ];M) of (Σ) that satisfy
γ(0) = γ(T ) = p and Imγ ∩Ni 6= ∅, for every i ∈ {1, . . . , n}.

In view of the interpretation of (Σ) as a kinematic model for planar motion, the targets Ni,
above, correspond to fixed points in R

2. Hence, to lessen the notational burden in the remainder of
the paper, we refer to targets simply as points (xi, yi) in the plane and retain the precise notation
{(xi, yi)} × S

1 whenever mathematical consistency is warranted. In the same vein, the DTSP can

1In the chart on TM induced by the chart (U, φ) = (R2 × S
1 \ {(−1, 0)}, (x, y, v, w) 7→ (x, y, θ = atan(w/v))) on

M . To cover the entire state space M , a second chart can be chosen in an obvious manner.
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be stated less formally as follows. Given an initial condition p and n points in the plane, find
the shortest path for a Dubins vehicle that starts from p, passes through every given point, and
returns to p. In our formulation of the DTSP, not only the initial position of the Dubins vehicle is
assumed given, but also the initial orientation. It is, of course, possible to also consider the initial
orientation of the Dubins vehicle as an independent variable of the optimisation problem. In [22],
for example, the initial orientation is chosen freely. This minor discrepancy leads to minor only
modifications for any given algorithm to be applicable to either one formulation of the DTSP. To
avoid trivial complications with the statements and the notation that follow, we always assume
that the targets are distinct from each other and the initial condition p does not lie in any target.
Lastly, a tour corresponding to a trajectory γ ∈ Γcl

Σ(p,N1, . . . , Nn) will be called an admissible
tour.

2.2 Dubins paths

An essential component of the algorithms presented in later sections is the computation of minimum-
time paths for the Dubins vehicle. We, therefore, recall the classification by Dubins [11] of such
paths.

Let Cφ denote a circular arc of φ radians and of radius ρ in the plane, and Sd a straight-line
segment of length d in the plane. A C1 concatenation of such arcs and straight-line segments is
denoted by juxtaposition of the corresponding symbols. For example, CαSdCβ denotes a C1 curve
that consists of an arc of α radians, followed by a straight-line segment of length d, followed by an
arc of β radians. Consider, now, the Dubins Problem (DP) which is the following minimum-time
problem.

DP: Given two points p, q ∈ M , minimise the time T > 0 over the set of trajectories γ ∈
W 1,1

loc ([0, T ];M) of (Σ) such that γ(0) = p and γ(T ) = q.
The following theorem is proven in [5, 11, 23].

Theorem 1. A solution to the Dubins Problem exists and an optimal path has to be either of the
form CαCβCδ or of the form CαSdCβ, where 0 ≤ α, δ < 2π, π < β < 2π, and d ≥ 0.

Moreover, it is shown in [23] that, if CαCβCδ is an optimal path, then min{α, δ} < β −
π and max{α, δ} < β. A path that corresponds to a solution to the DP is called a Dubins path.
Starting from Theorem 1, it can be shown that a solution to the DTSP exists [3, Theorem 3.5.1] [10,
Proposition 2.3, Theorem 3.1]. On the other hand, since solutions to the DP are not unique in
the sense that, in general, the minimum may be attained by more than one trajectory, solutions
to the DTSP are not unique, a fortiori (an example is given in [14]).

The formulation of the DTSP as a minimum-time control problem hints at possible algorithms
for the computation of approximate solutions. The description of such an algorithm is the content
of the next section.

2.3 The k-step look-ahead algorithm

The motivation behind the k-step LAA is to replace a uniform (in [0, 2π)) or random assignment of
headings to each target with a judicious choice of headings. This is accomplished by employing a
receding horizon principle that allows the motion planning to be integrated with the combinatorial
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aspect of the DTSP. We turn, now, to a concrete description of these ideas. For future reference,
let us call the problem of finding a minimum-time trajectory of (Σ) through k targets the “k-step
look-ahead Dubins problem” (k-step LADP). A precise formulation is as follows.

k-step LADP: Let k be a positive integer. Given a point p ∈ M and an ordered k-tuple
(N1, . . . , Nk) of distinct submanifolds (targets) of the form Ni = {(xi, yi)} × S

1 ⊂ M , where
(xi, yi) ∈ R

2 and i ∈ {1, . . . , k}, minimise the time T > 0 over the set of trajectories γ ∈
W 1,1

loc ([0, T ];M) of (Σ) such that γ(0) = p, γ(T ) ∈ Nk, and Imγ ∩ Ni 6= ∅, for every i ∈
{1, . . . , k − 1}.

In words, we seek a minimum-time path that starts from p, passes through every target in the
given order, and ends at the last target. A few comments about the k-step LADP are in order. Let
γ̃ denote a solution to the k-step LADP. Let, also, ti denote the first time instant when γ̃(ti) ∈ Ni,
where i = 1, . . . , k and tk = T . First, it should be noted that the restriction γ̃|[tk−1,tk], that is, the
part of the optimal trajectory between the last two targets can be computed much more efficiently
if, instead of Theorem 1 that classifies the minimum-time paths between two given states, we use
the following result of [4] that classifies the Dubins paths between a given initial state and a given
final position. It is an immediate consequence of the transversality condition at Nk [20].

Lemma 1. A path that corresponds to a solution to the 1-step LADP is either of the form CαCβ

or of the form CαSd, where 0 ≤ α < 2π, π < β < 2π, and d ≥ 0.

According to the terminology used thus far, Lemma 1 classifies the solutions to the 1-step
LADP (whose corresponding paths are also known as relaxed Dubins paths) and waives the
need to check all possible headings at the final target when an optimal solution to the k-step LADP
is computed numerically.

Second, given an instance of the DTSP with n targets, a solution to the k-step LADP with k
= n + 1 and the final condition γ(T ) = p substituted for the condition γ(T ) ∈ Nk is a globally
optimal solution to the DTSP. Clearly, globally optimal trajectories are only relevant when one
seeks to comprehend the structure of the solutions to the DTSP by considering instances with a
few targets only.

Third, the philosophy behind the k-step LADP—and the advantage of the resulting k-step look-
ahead algorithm—is that, even if k is taken to be small (e.g., 1 or 2) relative to n (the number
of targets in a given instance of the DTSP), satisfactory admissible tours can still be obtained by
iteratively solving a, perhaps large, number of computationally tractable problems.

A formal description of the k-step LAA is somewhat involved and the bookkeeping alone
obscures the main idea behind the algorithm. We opt, instead, for a description of the case
k = 2 by means of a representative example that is simple enough to keep the presentation clear,
but also contains the essential ideas so that the extension to the general case (k > 2) becomes
straightforward.

Suppose an instance of the DTSP with n = 4 targets is given and the algorithm to be applied
is the 2-step LAA. The first step is to construct a rooted tree whose root R represents the initial
condition p ∈ M × S

1 of the Dubins vehicle and induces an orientation on the tree away from
the root. The children of the root represent, temporarily, the four possible targets. This is shown
in Figure 2.1. The representation is “temporary” because, eventually, every node of the tree will
represent a target together with a heading assigned to it, not simply a target. Consequently,
different nodes may correspond to different headings at the same “physical” target. Next, we
assign headings to each one of the children/targets. To this end, each child of R is replicated as
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R

A B C D

Figure 2.1: The root R of the tree represents the initial condition of the Dubins vehicle and the
children of the root represent four targets before headings are assigned to them.

R

AB AC AD BA BC BD CA CB CD DA DB DC

Figure 2.2: Each child of the root in Figure 2.1 is duplicated as many times as the number of
possible subsequent targets. The labels on the nodes represent the order in which the targets are
visited and each node represents a state of the Dubins vehicle, that is, a location and a heading.

many times as the number of possible subsequent targets. For example, after visiting target A,
there are three options: to visit either target B or C or D. Therefore, the root has ∆4

2 = 4!
2!
= 12

children.2This process leads to the tree in Figure 2.2 and is a consequence of setting k = 2 because,
now, each node XY , where X, Y ∈ {A,B,C,D} and X 6= Y , can be used to represent the target
X with the heading assigned to it by solving the 2-step LADP with initial condition p (represented
by the root R), first target X , and second target Y . In the notation of the previous sections, if γ̃ is
a solution to such a 2-step LADP, τ ∈]0, T̃ [ is the first time when γ̃(τ) ∈ X , and (x, y, θ) are local
coordinates, then the child XY is assigned the heading θ(τ). The length of the Dubins path that
corresponds to γ̃|[0,τ ] is assigned as weight to the edge that connects p to XY . This assignment
of headings allows us to view the node XY as the state of the Dubins vehicle that consists of
the position of the target X and the heading θ(τ). Because the heading at a target X depends
on the target Y that is visited next, the grandchildren of the root p are not arbitrary. Rather, a
child of a node XY has to be of the form XY Z (i.e., the first two letters remain the same), where
X, Y, Z ∈ {A,B,C,D}. Figure 2.3 illustrates this idea which is a design choice: we could allow
the children of the node XY to be of the form XWZ with W not necessarily equal to Y , however
such a choice would vitiate the anticipative nature of the algorithm. Constraining the children of
each node in this way also has the effect of reducing the total number of nodes in the resulting
tree.

2By definition, ∆n

k
= n!

(n−k)! .
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R

AB AC AD DA DB DC

ABC ABD ACB ACD ADB ADC DAB DAC DBA DBC DCA DCB

ABCD ABDC ACBD ACDB ADBC ADCB DABC DACB DBAC DBCA DCAB DCBA

ABCDR ABDCR ACBDR ACDBR ADBCR ADCBR DABCR DACBR DBACR DBCAR DCABR DCBAR

R

…

…

…

…

Figure 2.3: The rooted tree used to find a feasible tour for a DTSP with n = 4 targets and
look-ahead horizon k = 2.

Having assigned a heading to every child XY of p, we can proceed in the same manner and compute
the weights between the children and the grandchildren of R. The weight of the edge between two
nodes XY and XY Z is computed by solving the 2-step LADP with initial condition XY (recall
that nodes represent states), first target Y and second target Z. By repeating this procedure, the
tree in Figure 2.3 is constructed. To conform with the definition of a rooted tree, the dashed part
in Figure 2.3 should not be considered as being formally part of the tree; it is included as a visual
aid to the description of the algorithm. Towards the lower end of the tree an off-by-one issue has
to be resolved, but this can be done in a straightforward manner. Specifically, the heading of a
node (state) with label XY ZWR, that is, of a node that corresponds to the last target before
returning the Dubins vehicle to its initial condition, has to be computed by solving a 2-step LAA
with the final condition γ(T ) = p substituted for the condition γ(T ) ∈ Nk. Similarly, when k > 2,
the value of k has to be reduced towards the final stages of the construction of the tree, simply
because the look-ahead horizon of the algorithm will exceed the number of targets that are left to
be considered (this reduction is, of course, computationally beneficial). Let the tree constructed by
the k-step LAA be denoted by Gk,n = (Vk,n, Ek,n) (in Figure 2.3, k = 2 and n = 4). The following
proposition gives an upper bound on the length of shortest paths from the root R to the terminal
node of Gk,n.

Proposition 1. A shortest path in Gk,n from the root to the (ficticious) terminal node represents
a DTSP tour of length at most

ETSP(n) + (n+ 1)κπρ,

where n is the number of targets, κ is a constant, and ETSP(n) denotes the length of a solution
to the corresponding ETSP.

Proof. Every admissible solution to the DTSP is a concatenation of Dubins paths γi, i = 1, . . . , n+
1, and the length ℓ(γ) of a Dubins path γ between two targets satisfies ℓ(γ) ≤ d + κπρ, where d
is the Euclidean distance between the targets and κ ∈ [2.657, 2.658] is a constant [22, Thm 3.4].
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Moreover, an instance of the DTSP can also be viewed as an instance of the ETSP and one of the
paths from the root R to the terminal node in Gk,n corresponds to the optimal order σETSP for the
ETSP. Therefore, the following bound holds for the length Lk

ρ(n) of a shortest path from R to the
terminal node

Lk
ρ(n) =

∑n+1
i=1 ℓ(γi) ≤

∑n+1
i=1 (di + κπρ)

= ETSP(n) + (n+ 1)κπρ,
(2.1)

where ETSP(n) denotes the length of the solution σETSP.

Remark. The simulations in Section 2.5 provide strong evidence that the bound (2.1) is not
always sharp, especially when the average intercity distance is comparable to the minimum turn
radius of the Dubins vehicle. This is to be expected because the derivation of (2.1) does not take
into consideration essential features of the k-step LAA such as ordering the targets independently
of the solution to the ETSP and the use of a receding horizon principle. On the other hand, it is
obvious that

lim
ρ→0

Lk
ρ(n) = ETSP(n).

Once the tree Gk,n has been constructed the k-step LAA reduces to a shortest path algorithm.
To this end, existing algorithms can be adopted. For the implementation of the 1-step and 2-step
LAA used to generate the simulations in Section 2.5, Dijkstra’s algorithm was chosen because of
its simplicity and because it is guaranteed to return a shortest path in the tree. As far as the
resulting time-complexity of the k-step LAA is concerned, a first observation is that

|Vk,n| ≥ 1 +
∑n

i=1
n!

(n−i)!
, (2.2)

where equality holds for k = 1 and the standard convention 0! = 1 is assumed. In the case k = 2
that we use as our running example, we have

|V2,n| = 1 + n! +
∑n

i=2
n!

(n−i)!
= |V1,n|+ n!− n. (2.3)

Remark. If we construct a tree G̃2,n = (Ṽ2,n, Ẽ2,n) that represents all possible DTSP tours in
the case where two headings are assigned to each target either randomly or by partitioning [0, 2π)

into two subintervals, then |Ṽ2,n| increases faster than |V2,n| with respect to n. The following table

shows the values of |Ṽ2,n| and |V2,n| as the size n of an instance of the DTSP increases.

n 3 4 5 6 7 8 9 10

|Ṽ2,n| 16 65 326 1957 13700 109601 986410 9864101

|V2,n| 19 61 201 871 5293 40713 363457 3629611

If the min-priority queue used by Dijkstra’s algorithm is implemented as a Fibonacci heap,
then the time-complexity of searching in Gk,n is [9]

O(|Vk,n| log |Vk,n|+ |Ek,n|) = O(|Vk,n| log |Vk,n|+ |Vk,n|), (2.4)

where we used the fact that |Ek,n| = |Vk,n| − 1, because Gk,n is a tree, and discarded the additive
constant. Additionally, the weight of every edge in Ek,n is computed by solving a k-step LADP.
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Given that Dubins paths can be computed in constant time O(1), if we partition [0, 2π) uniformly
into h subintervals, then the time-complexity for a numerical approximation of a solution to a k-step
LADP is O(khk−1), if we ignore additions and finding minima among lists of numbers. However,
a useful observation is that the tree Gk,n does not have to be constructed in its entirety and then
searched; instead, only the propagating front of Dijkstra’s algorithm needs to be stored. This idea,
combined with an upper bound for the DTSP tour can reduce the number of computations and
amount of memory required. The above discussion is summarised in the following proposition for
the case k = 2 in which simple explicit formulae like (2.3) can be obtained. Moreover, in practice,
the 2-step LAA seems to achieve a good balance between computation time and the size of the
resulting DTSP tour.

Proposition 2. The worst-case time-complexity of the 2-step look-ahead algorithm is

O (|V2,n| log |V2,n|+ (4h+ 1)|V2,n|+ n!) , (2.5)

where h is the number of subintervals into which [0, 2π) is partitioned when approximating a solution
to the 2-step LADP.

Proof. Assuming that the whole tree G2,n has to be searched until a shortest path is found, then,
as explained above, the running time for the search procedure is

O(|V2,n| log |V2,n|+ |V2,n|).

Assigning a weight to every edge of G2,n requires

O ((2h+ h+ h)|V2,n|) = O(4h|V2,n|) (2.6)

operations and an additional O(n!) to compute the weights of the dashed edges in Figure 2.3 that
correspond to the final Dubins paths that complete the DTSP tours. The term (2h + h + h) in
equation (2.6) comes from the fact that we consider h headings in [0, 2π) and, for each heading,
we have to compute two Dubins paths (one path that connects the initial condition of the Dubins
vehicle to the first target and one path that connects the first to the second target; see the
formulation of the k-step LADP), sum their lengths, and find the minimum among the h sums of
lengths. That is, there are 2h computations of Dubins paths, h additions, and finding a minimum
among h numbers (which takes O(h) [9]). Combining everything together gives (2.5).

Similar analyses can be carried out for different values of the look-ahead horizon k, however
the calculations need to account for a varying k and, hence, are more involved.

Once headings have been assigned to the targets using the receding horizon principle behind
the k-step LAA, another possibility for obtaining an admissible DTSP tour is to view the vertices
in Vk as a GATSP with n clusters. Each cluster consisting of the vertices in Vk that represent
different headings at the same target. The resulting GATSP can be subsequently transformed to
an ATSP and solved by means of an approximation algorithm such as the algorithm in [16, Thm
4.1]. When an approximation algorithm for the ATSP is incorporated as part of the k-step LAA,
the solution space is different (larger) than in the case where a shortest path algorithm in Gk,n is
used, unless the constraint that a child of a node of the form XY be of the form XY Z is imposed,
as explained in Section 2.3.

We conclude this section with one final remark on the applicability of the k-step LAA to large
instances of the DTSP. One possibility is to create small clusters of targets according to a suitable
criterion, apply the k-step LAA to each cluster, and combine the resulting tours into a single tour.
This method is facilitated if the targets naturally form spatially separated clusters.
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Figure 2.4: A schematic representation of a 2-Opt move.

2.4 A local improvement algorithm

The goal of this section is to describe an algorithm that can be applied to instances of the DTSP
that are too large for the k-step LAA to be practical. The motivation behind the algorithm is
twofold. First, to leverage one of the many ideas that have been successfully applied to the ETSP
and, second, to exploit the fact that, if the order of the targets is fixed, then an admissible DTSP
tour can be found quickly. For a thorough description of the ideas that follow, in their original
context (the TSP and the ETSP), and related results the reader is referred to [15, Section 3].

A class of algorithms that are particularly effective for the ETSP is that of local improvement
algorithms, also known as exchange heuristics. These are algorithms characterised by a set of
exchanges or moves that reorder the targets. A local improvement algorithm attempts to decrease
the length of a given tour by performing a sequence of admissible moves. If a move results in
a shorter tour, then the new tour is stored as the current optimum, otherwise the new tour is
discarded. A sequence of moves is performed until either there there is no improvement or a
predetermined maximum number of moves is reached. The most widely known local improvement
algorithms are the k-Opt algorithms. The idea behind them is to remove k edges from a given
tour, thus breaking the tour into separate paths, and reconnect these paths in different ways. For
example, if ACBDA is the initial tour in Figure 2.4, then an example of a 2-Opt move performed
by a 2-Opt algorithm is the replacement of edges (A,C) and (B,D) by edges (A,B) and (C,D).
In this contrived example, a single move leads to the optimal tour.

Analysing the performance of k-Opt algorithms is a non-trivial matter (e.g., determining after
how many moves they halt, their approximation ratio, or if they are guaranteed to improve a given
initial tour) and in practice they perform better than what the theoretical analysis suggests [15].
One reason behind the discrepancy between the theoretical bounds and the actual performance
of the algorithms is that, in deriving worst-case bounds, it is assumed that an adversary chooses
the initial tour or that the adversary also chooses the moves performed by the algorithm. The
situation is even more complicated in the case of the DTSP because much less is known analytically
about the properties of optimal solutions. For example, an uncrossing move like the one shown
in Figure 2.4) cannot increase the length of an ETSP tour and it is known that all crossings can
be eliminated from a tour by applying at most n3 2-Opt moves that remove crossings. Although
there are no analogous results for the DTSP, the main idea behind the k-Opt algorithms can be
combined with randomisation to obtain an algorithm for the DTSP that performs well in practice.
For concreteness and simplicity we consider only the combination of a 2-Opt move with the k-step
ETSP-LAA. A 2-Opt move means that, given a DTSP tour, we choose two pairs of consecutive
cities (A,B) and (C,D) on the tour and alter the tour so that C is visited after A and D is visited
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2-Opt k-step look-ahead algorithm

Input: An instance of the DTSP and a positive integer
Imax

Output: An admissible DTSP tour
1: Imax ← maximum number of moves
2: Find an initial order σ0 for the targets.
3: Use σ0 to apply the k-step ETSP-LAA and obtain

an initial DTSP tour of length L0 and a vector
H0 containing the headings at the targets.

4: for i = 1 to Imax

5: Apply a randomly generated 2-Opt move to σ0
to find a new order σ.

6: Use σ to apply the k-step ETSP-LAA and ob-
tain a DTSP tour of length L and a vector H
containing the headings at the targets.

7: if L < L0

8: σ0 ← σ
9: H0 ← H
10: L0 ← L
11: end if
12: end for
13: return σ0, H0, and L0

Table 2.1: The 2-Opt k-step look-ahead algorithm

after B. Having no easy (systematic) way to tell a priori which moves will not increase the length
of a tour, the 2-Opt moves are generated randomly. The algorithm terminates when a predefined
maximum number Imax of moves has been attempted. The corresponding 2-Opt k-step look-ahead
algorithm is described in Table 2.1. To obtain an upper bound for the output of the 2-Opt k-
step LAA, suppose that an initial order for the targets is found using an approximation algorithm
for the ETSP (step 2 in Table 2.1) with approximation ratio α. In principle, such an algorithm
could be Christofides’s algorithm [6] which has approximation ratio 3/2 or obtained from Arora’s
polynomial time approximation scheme for the ETSP [2]. Then we have the following.

Proposition 3. Given an instance of the DTSP with n targets, the 2-Opt k-step look-ahead algo-
rithm returns a DTSP tour of length at most

α · ETSP(n) + (n + 1)κπρ. (2.7)

Proof. Given an initial ETSP tour whose length is α times the length of an optimal tour, equa-
tion (2.1) implies that the length L0 of the corresponding DTSP tour (step 3 in Table 2.1) satisfies

L0 ≤ α · ETSP(n) + (n+ 1)κπρ.

In the worst case scenario, no 2-Opt move will result in any improvements of the DTSP tour and
σ0, H0, and L0 will be the output of the 2-Opt 2-step look-ahead algorithm.

Similarly to the case of the k-step LAA, a bound that relies on the order of the targets that
corresponds to a solution to the ETSP (possibly approximate solution, in the case of the 2-Opt
k-step LAA) is not expected to be sharp, unless the minimum turn radius of the Dubins vehicle is
small relative to the average intercity distance. On the other hand, the right-hand side of (2.1) is
susceptible to relatively accurate estimations by means of the Held–Karp bound for the ETSP [15,
Section 2.3].
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2.5 Simulations

2.5.1 The 2-step look-ahead algorithm

The k-step LAA can also be used simply as a receding horizon algorithm on a sequence of n targets
(Ni)

n
i=1 that have been ordered by some other method, e.g., by solving an ETSP. Specifically,

suppose that the targets have been reindexed so that Ni is the i-th target. Starting from the
initial condition p, a solution γ̃ is found to the k-step LADP that corresponds to the first k
targets. Then, only the part γ̃|[0,t1] that connects p to N1 is kept and the point γ̃(t1) is considered
as a new initial condition from which the k-step LADP for the targets N2 to Nk+1 can be solved.
This procedure is repeated until an admissible tour is constructed with the horizon k being reduced
as necessary when less than k targets are left. Recall that we called this method for finding DTSP
tours the “k-step ETSP-LAA”.

In this section, the following five algorithms are compared by means of Monte Carlo simulations
and the results are shown in Figures 2.5 to 2.7.

1. 1-step ETSP-LAA: An ETSP is solved to order the targets and the look-ahead horizon is
set to k = 1.

2. 2-step ETSP-LAA: An ETSP is solved to order the targets and the look-ahead horizon is
set to k = 2.

3. 1-step LAA: The k-step LAA of Section 2.3 for k = 1.

4. 2-step LAA: The k-step LAA of Section 2.3 for k = 2.

5. AA: (alternating algorithm) This is the algorithm described in [22].

Remark. In [17], algorithms (1) and (2), above, are called “two-point algorithm” and “look-ahead
algorithm”, respectively. Note, however, that, in [17], these algorithms are applied to sets of targets
that are ordered randomly, as opposed to being ordered by first solving the corresponding ETSP.

For each number of targets shown in the x-axes of Figures 2.5, 2.6, and 2.7, 100 instances of
the DTSP were randomly generated using the implementation of the Mersenne twister provided by
the Boost C++ Libraries [1]. The initial condition was set equal to p = (0, 0, π/2) and the targets
were contained in [−2.5, 2.5]2 ⊂ R

2 with uniform distribution. Next, each algorithm was applied
to all randomly generated instances and the length of each DTSP tour was normalised (divided)
by the length of the solution to the ETSP for the same set of targets (hence, the normalised length
of the solution to the ETSP is always equal to 1). The y-axes correspond to the average of these
normalised lengths. The three figures correspond to three different minimum turning radii. As
expected, when the minimum turn radius is small (i.e., ρ = 0.1 in Figure 2.7) relative to the
distance between the targets, the difference between the output of the five algorithms is negligible
(note the range of the y-axis). In such a case, execution speed becomes the dominant factor in
choosing an algorithm and the 2-step LAA is the most time-consuming among the five algorithms.
In all cases, however, the 2-step LAA yields the shortest DTSP tours as the number of targets
increases.

Figure 2.5 corresponds to minimum turn radius ρ = 1 and can be used to quantify our earlier
statement that the bound (2.1) is not always sharp. We observe that, for the generated instances
of the DTSP,

L2
1(n) < 1.7 · ETSP(n), n = 3, . . . , 9, (2.8)

19



1 2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

3.5

4
Comparison of algorithms – ρ = 1

Size of DTSP (number of targets)

A
ve

ra
ge

 r
at

io
 o

f t
ou

r 
le

ng
th

s 
(D

T
S

P
 / 

E
T

S
P

)

 

 
1−step ETSP−LAA
2−step ETSP−LAA
1−step LAA
2−step LAA
AA
ETSP

Figure 2.5: Comparison of five algorithms via Monte Carlo simulations. For each number of targets
shown in the horizontal axis, the algorithms were applied to 100 randomly generated instances of
the DTSP. For a fixed minimum turn radius equal to 1 and a fixed initial condition of the Dubins
vehicle (0, 0, π/2), the positions of the targets were generated with uniform distribution in the
square [−2.5, 2.5]2 ⊂ R

2. The length of every DTSP tour was normalised (divided) by the length
of the ETSP tour for the same set of targets and the vertical axis corresponds to the average
normalised lengths of the DTSP tours.

on the average. For the sake of comparison, if we set n = 9 and ETSP(9) equal to the average
value ETSP(9) = 13.387 of the length of the 100 ETSP tours with 9 targets used to generate
Figure 2.5, then the right-hand side of (2.1) becomes 96.891, whereas the right-hand side of (2.8)
becomes 22.758.

In Figure 2.8, the five algorithms are compared on an instance of the DTSP where five targets
and the initial condition lie on a circle of radius r = 1.1 and the minimum turn radius ρ is equal
to 1. This example is chosen because it allows a comparison between the output of each algorithm
and the optimal DTSP tour which is approximately a circle of radius r (Fig. 2.8e). Moreover,
it demonstrates how reliance on the solution to the ETSP can lead to DTSP tours that are far
from optimal. Specifically, the optimal ETSP tour is a polygon inscribed in the circle of radius r,
however, if the targets are ordered clockwise (the orientation of a tour is immaterial for the ETSP)
the k-step ETSP-LAA, for k = 1, 2, and the alternating algorithm output the tours shown in Fig.
2.8a, 2.8b, and 2.8c, respectively.

2.5.2 The 2-Opt 2-step look-ahead algorithm

For the simulations in this section, the 2-Opt k-step LAA was implemented for k = 2 and a
simplified version of the 2-Opt algorithm for the ETSP was used to find an initial order σ0 for the
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Figure 2.6: Same as Figure 2.5, but with ρ = 10.
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Figure 2.7: Same as Figure 2.5, but with ρ = 0.1. The scale of the vetical axis shows that, when
the minimum turn radius is small compared to the average distance between the targets, the DTSP
tours approximate the solution to the ETSP.
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Figure 2.8: Comparison of five algorithms on an instance of the DTSP with the 5 targets and the
initial condition lying on the circle x2 + y2 = r2, r = 1.1. The minimum turn radius is ρ = 1 and
the initial condition of the Dubins vehicle is p = (1, 0, π/2). The DTSP tour generated by the
2-step LAA practically coincides with the optimal solution.
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Figure 2.9: Comparison of the 2-Opt 2-step LAA, the 2-step ETSP-LAA, and the alternating
algorithm on a single instance of the DTSP with 20 targets. Similarly to Figure 2.5, the minimum
turn radius is ρ = 1, the initial condition of the Dubins vehicle is p = (0, 0, π/2), and the positions
of the targets are randomly and uniformly distributed in [−2.5, 2.5]2 ⊂ R

2. The ETSP tour in (a)
is found using a simplified version of the 2-Opt algorithm and is not optimal. In (d) the maximum
number Imax of 2-Opt moves equals 1000.

targets. The same order σ0 was provided as input to the 2-step ETSP-LAA and the alternating
algorithm. Because the 2-Opt algorithm is not guaranteed to find a global minimum, it should
be noted that it is with respect to this approximate solution to the ETSP that the lengths were
normalised. Applying the 2-Opt 2-step LAA to an instance of the DTSP with n = 20 and Imax =
1000 requires less than five minutes. An example is shown in Figure 2.9. Besides experimenting
with the value of Imax, there are improvements that can be made in the implementation of the 2-Opt
k-step LAA to reduce the execution time. First, the algorithm in Table 2.1 is easily parallelisable
in a way that multiple threads can be executed almost independently. Second, when a 2-Opt move
is applied to σ0 to obtain a new order σ (step 5), the tours that correspond to σ0 and σ can have
a large part in common and the new tour need not always be computed anew. In general, this is
the case if the 2-Opt move alters the latter part of σ0.

23



Mulitple UAV scenarios

The problem considered in the second phase of the research includes allocating a group of vehicles
to a given set of targets while taking into account the vehicles’ kinematic constraints and avoiding
collision with obstacles scattered in the environment. Each target is assigned with a time dependent
value (referred to as the target benefit) that represents the target’s importance and priority. The
objective is to maximize a reward function which is the sum of all the benefits gathered by the
group of vehicles.

3.1 Problem Formulation

3.1.1 Vehicles

Let V = {V1, V2, .., VNV
} be a set of unmanned aerial vehicles which need to complete the visit

requirements of the given set of targets. The vehicles have a minimum turn radius and can move
only forward. The kinematic constraints need to be accounted for when planning the vehicles’
trajectory. The equations of motion are presented below:

Vehicle kinematics

ẋ = v cosψ

ẏ = v sinψ (3.1)

ψ̇ = ω

Motion constraints:

only forward motion is allowed
v = U (3.2)

Turn rate constraint (Given a minimum turn radius)

|ω| 6 U/Rmin (3.3)

where (x,y) are the vehicle’s Cartesian coordinates and ψ is the vehicle’s orientation angle, U and
ω are the vehicle’s constant speed and maximum turn rate respectively.
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3.1.2 Targets and Benefits

Let T = {T1, T2, .., TNT
} be the set ofNT stationary targets designated for the group of vehicles. Let

C = {C1, C2, ..., CNT
} be the set of initial benefits assigned to each target and let S = {1, 2, ..., NT}

be the set of stages in which a target is allocated as an assignment to a vehicle. The target’s
benefit represents the value granted to a vehicle for visiting the target. Since the benefits are time
dependent, we propose a mathematical formulation which is referred to as the ”benefit function”.
This formulation represents the reward granted to a vehicle for visiting a target, depending on the
target’s priority (represented by its initial benefits) and the time it takes the vehicle to get to the
target from its initial position.
Let

tmik = Lm
ik/V (3.4)

be the time required for vehicle i ∈ V to travel to target k ∈ T at stage m ∈ S from its current
position. Lm

ik, V are the path length taken by vehicle i to visit target k at stage m and the vehicle
constant speed, respectively. Note that Lm

ik depends on the assignment history of vehicle i prior to
stage m. The assignment history is used to obtain the initial condition (position and orientation)
required to calculate the vehicle’s path. Let A be a user defined coefficient which defines the benefit
function’s descent rate.

∑l

m=1

∑NT

k=1 t
m
ik is the total time required for vehicle i to travel to target

k from its initial position at the current stage l . We use the descent rate coefficient and the total
time passed until the vehicle visits the current target to formulate the benefit function as follows:

Cje
−A

∑
l

m=1

∑NT

k=1
tm
ik (3.5)

This formulation helps create a problem in which the vehicle assignments’ order depends on the
path to each target and not only on the target’s initial priority (for example, the highest priority
target is not necessarily visited first and the time to arrive at the target’s location is also taken into
consideration). In addition, the same formulation can be used to describe the example scenario
that includes a UGS network and a team of unmanned vehicles used for intruder detection and
identification. The vehicles’ response time is taken into account by calculating the vehicles’ path
length, and the targets’ different initial priority represents the order of the UGS triggering time.
Since the time it takes a vehicle to reach a target depends on the vehicle’s path length, the latter
will be calculated using a motion planning subroutine, described in section 3.2. Figure 3.1a shows
the benefit function’s change over time, each curve begins with a different initial value (initial
benefits 3 and 10). The benefit function is a monotonically decreasing function and as such, the
initial value diminishes as time progresses. When the descent rate coefficient is changed (increased
by 5 times), the benefit rapidly diminishes over time, as seen in Figure 3.1b. The increase of the
descent rate may also cause a change in the targets assigned to each vehicle or a different order in
which the assigned targets need to be visited.

3.1.3 Cost function

The objective is to complete the visit requirement (visiting the given set of targets once) so as to
maximize a reward function. The reward function considered is the overall of benefits acquired by
the vehicles:

J1 =

NV∑

i=1

NT∑

l=1

NT∑

j=1

[Cje
−A

∑
l

m=1

∑NT

k=1
tm
ik
xm

ik ]xlij (3.6)
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Figure 3.1: Benefit Function

where xlij ∈ {0, 1} be a binary decision variable that equals 1 if vehicle i visits target j at stage
l. Since the benefit function diminishes with time, we formulate a ”lost” benefit function which

is given by Cj − Cje
−A

∑
l

m=1

∑NT

k=1
tm
ik . The ”lost” benefit function formulation allow the definition

of a cost function which is the equivalent to the reward function defined above, but instead of
maximizing the reward function the objective is to minimize the cost function. The cost function
mathematical formulation is given by

J2 =

NV∑

i=1

NT∑

l=1

NT∑

j=1

[Cj − Cje
−A

∑
l

m=1

∑NT

k=1
tm
ik
xm

ik ]xlij (3.7)

The constraints of the problem are given by:

NT∑

l=1

NV∑

i=1

xlij = 1, j = 1, . . . , NT (3.8)

NV∑

j=1

NT∑

j=1

xlij = 1, ∀ l = 1, . . . , NT (3.9)

Eq. (3.8) ensures that each target is visited once. Eq. (3.9) ensures that in each stage only one
vehicle is assigned to a target.
In [31, 34, 26] somewhat similar problem involving multiple targets and vehicles was solved. The
cost function used in the related works is the sum of the path lengths of all the vehicles and can
be formulated as:

J3 =

NV∑

i=1

NT∑

l=1

NT∑

j=1

Ll
ijx

l
ij (3.10)

In these cases the targets’ importance is identical and it is ignored when solving the problem. In
the simulation results’ section we use this cost function to help compare the performance of the
proposed algorithms.
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The solution of the proposed problem includes solving two integrated subproblems: task assign-
ment and motion planning problems. In order to minimize the cost function, the task assignment
depends on the underlying motion planning for the path length, while the motion planning in turn
depends on the task assignment for the order of the vehicle’s targets. This makes the problems
coupled.

The motion planning problem is presented next. We assume that each vehicle is assigned with
a list of an ordered set of targets, made by the task assignment algorithm. The goal of the motion
planning is to derive a trajectory for each vehicle to visit all targets on the list, avoid collision with
obstacles and respect the vehicle kinematic constraints described in section 3.1.1. This goal should
be accomplished in minimum time in order to maximize the benefit acquired from each target.

3.2 Motion planning

In order to represent the motion planning problem in the form of a decision tree it is necessary to
generate nodes representing the following: targets position, vehicle’s initial configuration and the
obstacles’ vertices (under the assumption of polygonal obstacles). The vehicle’s path will either
be a direct path (free of obstacles) connecting the initial configuration and the set of targets, or
a path which also passes through some of the obstacles vertices, in case a direct path does not
exist. Each branch of the tree represents the described path. The root node (initial configuration)
is connected to all of the targets nodes and in case a direct path is not feasible, obstacles nodes
are also included. The goal is to find the branch that provides the minimum time path.

The vehicles in this work are modeled as Dubins vehicles. The Dubins paths are concatenation
of arcs of minimum radius turn and straight line segments which connect an initial and final
configuration (position and orientation). The optimal path can be achieved by checking 6 possible
path types for the Dubins vehicle [11]. In case the orientation angle in the final configuration is
removed the number of possibilities is significantly reduced. This is known as the relaxed Dubins
path that include only 4 [4].

An important benefit obtained by using the relaxed path is explained using the following exam-
ple: When calculating the optimal path between an initial (node 1), final (node 5) configurations
and three additional unordered configurations (for example: obstacle vertices) located between
them (nodes 2-4), the following branches of the tree graph are generated: A branch connecting
nodes 1-2-3-4-5 and a branch connecting nodes 1-2-4-3-5. In the relaxed case the path connect-
ing nodes 1 and 2 should be calculated only once, as it is independent of the remaining nodes.
However, in the non relaxed case, the arrival angle at node 2 depends on the order of the following
nodes (node 3 or 4) and the path between node 1 and 2 needs to be calculated separately for each
branch. This attribute, where the path between two nodes doesn’t depend on the following nodes
enables us to pose the problem as tree graph.

In order to find the relaxed optimal path which connects the initial configuration and the
targets’ set and doesn’t intersect with obstacles, it is necessary to search the tree graph presented
above. The search process includes calculating the relaxed path connecting the different graph
nodes - obstacles’ vertices or targets’ positions. In this search process the calculation of the relaxed
path is repeated multiple times, especially in large scale scenarios. In case real time scenarios
are considered, the use of the relaxed path becomes highly beneficial since the computational
complexity is significantly reduced, compared to the non relaxed case.

In this work an existing motion planning algorithm is used as a subroutine for the developed
task assignment algorithm. The motion planning solution can be achieved by one of two algorithms:
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Figure 3.2: A Tree graph for 2 vehicles and 3 targets

1) An Exhaustive algorithm which explores every branch of the search tree and evaluates every
possible visit order sequence in order to find the minimum cost one. 2) An A* like heuristic
algorithm which uses Euclidean distances as a heuristic estimation and a greedy approach to find
a feasible path. The algorithms are detailed in the Appendix. The product of these algorithms is
a vehicle’s feasible path, connecting an ordered set of waypoints among obstacles.

3.3 Task assignment

The task assignment problem is represented as a tree (as can be seen in Figure 3.2) by generating
nodes that describe a combination of a vehicle Vi assigned to target Tj. Nodes are constructed
until all combination of vehicles and targets have been taken into account. Each node is associated
with a cost. For example: node ViTj has a cost that equals the ”lost” benefit granted to vehicle i
for visiting target j. The ”lost” benefit value depends on the time that it takes vehicle i to reach
target j from its initial position, which in turn depends on the vehicles’ path length. The path is
obtained using a motion planning subroutine (described in section 3.2) which guarantees feasible
path for the vehicles. Since the motion planning subroutine is used in task assignment process,
the problem solution consists of a primary task assignment tree search which in turn depends
on a secondary motion planning tree search. Two algorithms that provide solutions to the task
assignment problem are proposed, an exhaustive search algorithm and a greedy algorithm. The
greedy algorithm provides a computationally fast solution which may not be optimal, and the
exhaustive algorithm explores all the assignment possibilities to derive an assignments allocation
with minimum cost value.

3.3.1 Exhaustive Task assignment Algorithm

The proposed algorithm which is describe in Algorithm 1, explores every branch of the tree to
evaluate all the assignments possibilities. The input to the algorithm is configurations of all
the vehicles, obstacles vertices locations, and targets positions. The algorithm is initialized by
computing an upper bound (line 1), which is calculated by using the greedy algorithm described
in section 3.3.2. The upper bound is used to prevent unnecessary exploration of branches by
bounding the branching of the tree. In the first step of the algorithm the first layer of the tree is
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generated, all possible vehicle target combinations are described as nodes and the associated cost is
calculated (lines 4-21). After the initial nodes are generated, the exhaustive search begins. A depth
first search is used to expand a branch until a leaf node is generated (line 22-44). When a node is
added, the accumulated cost of the branch is calculated and compared with the upper bound (line
28). In case the cost is higher, the branching is bounded. If a leaf node is reached and the upper
bound is higher than the accumulated cost, the upper bound is updated and assignments’ order
for each vehicle is stored (line 34-38). The process is repeated until all branches have been either
bounded or completely explored. The algorithm output is a minimum cost ordered set of targets,
assigned to each vehicle.

3.3.2 Greedy Task Assignment Algorithm

The proposed algorithm is based on a greedy search method which enables to quickly find an
assignment solution, it is described in Algorithm 2. Since the algorithm is greedy by nature,
the objective function used is the reward function presented in Equation 3.6. The input to the
algorithm is the configurations of all the vehicles, obstacles vertices locations, and targets’ positions.
In the first step of the algorithm, the benefit value of all possible pairs of vehicle-target are
computed (lines 2-7). The vehicle of the pair with the highest value is assigned to the corresponding
target (line 8). It is now assumed that the target is already visited and that the vehicle is at the
target position (lines 9-12). Next, the benefit value of all the possible pairs is evaluated again (lines
14-19). The values are compared in order to find the pair with the highest one and to relocate
the vehicle to the corresponding (now visited) target (line 20-24). This procedure is repeated until
the visit requirements are fulfilled (line 13). The output of the algorithm is a target list allocated
to each vehicle and the order in which the vehicles need to visit their assigned targets. Unlike
the exhaustive algorithm, the assignments’ order does not guarantee minimum cost since only a
specific (and not necessarily the optimal) branch of the tree has been generated.

3.4 Simulation Results

In this section, sample-runs are used to demonstrate the presented algorithms and to explain the
different parameters’ (vehicle type, benefit’s descent rate...) influence on the obtained solution. In
all the different scenarios, the task assignment algorithms (exhaustive or greedy) use the motion
planning subroutine (exhaustive or heuristic) based on the relaxed Dubins distances, hence the
coupling of the problem is kept. The vehicles’ turn radius is set to 60 [m] for illustrative reasons
and the targets’ initial benefit values can be set between 1,000 to 10,000 (the values are presented
in the figures next to each target as numeral between 1 and 10). Each scenario has a summary
table presenting the acquired and lost benefit, and the solution running time.

3.4.1 General Scenario

Figure 3.3 presents a scenario in which 2 aerial vehicles need to visit 4 targets with different initial
benefits. The scenario solution is obtained using different algorithm setups in each case. Table 3.1
summarizes the results of the different sample runs. The highest benefit (lowest lost benefit)
and longest running time were gained using an exhaustive algorithm setup (Figure 3.3a). When
the heuristic motion planning is used instead (Figure 3.3c), the cost remains the same but the
running time shortens. For the case of a greedy task assignment and heuristic motion planning

29



INPUT: Vehicles Configuration, Target position and and Obstacles vertices positions.

1: Upper bound=(Greedy task assignment algorithm solution)

2: Open list=[ ] ⊲ Initialize the Open list - stores the node

to be examined further.

3: Target list=Tj : j = 1 . . . NT ⊲ Initialize a list containing targets to be

visited.

4: for (Vi : i = 1 to NV ) do ⊲ Generate the first layer of the tree.

5: for (Tj : j = 1 to NT ) do

6: Current node-Vehicle=Vi

7: Current node-Target=Tj

8: Current node-Path(Vi)=Path Length(Vi,Tj) ⊲ Calculate the path length between the

current vehicle and target.

9: Current node-Cost=Lost Benefit function(Current node-Path(Vi))

⊲ Calculate the Lost benefit value.

10: Current node-Target list=Target list\Tj ⊲ Remove the current target from the tar-

get list of the expanded branch.

11: Current node-vehicle target list(Vi)= Tj ⊲ Store the targets assigned to each vehicle

12: if Current node-Target list = ∅ then ⊲ If a leaf node is reached and its cost is

lower than the upper bound: update the

upper bound and store the vehicle’s as-

signed targets

13: if Current node-Cost ≤ Upper bound then

14: Upper bound=Current node-Cost(Vi)

15: Vehicle target list(Vi)= Tj

16: end if

17: else ⊲ Add the current node to Open list for

further exploration.
18: Open list =Open list ∪ Current node

19: end if

20: end for

21: end for

Algorithm 1: Task assignment Exhaustive search algorithm

30



22: while Open list 6= ∅ do ⊲ Perform a Depth First Search

23: Parent node=Open list(last inserted node) ⊲ Choose the last inserted node as the cur-

rent parent node for further exploration

24: for (Vi : i=Parent node-Vehicle to NV ) do ⊲ Consider all possible children nodes.

25: for Tj ∈Parent node-Target list do

26: Child node-Path(Vi)=Path Length(Vi,Tj)

+ Parent node-path(Vi) ⊲ Calculate the overall distance trav-

eled by vehicle-Vi in the explored

branch.

27: Child node-Cost=Parent node-Cost ⊲ Calculate the cost

+ Lost Benefit function(Child node-path(Vi))

28: if Child node-Cost ≤ Upper bound then ⊲ If the cost is higher than the upper

bound, the branching is bounded

29: Child node-vehicle=Vi

30: Child node-target=Tj

31: Child node-Target list=Parent node-Target list\Tj

32: Child node-vehicle target list(Vi)= [Parent node-vehicle target list(Vi), Tj]

33: if Child node-Target list = ∅ then ⊲ If a leaf node has been reached: update

the upper bound and store the vehi-

cle’s assigned targets.

34: Upper bound=Child node-Cost(Vi)

35: Vehicle target list(Vi)=Child node-vehicle target list(Vi)

36: else

37: Open list =Open list ∪ Child node ⊲ Add the child node to Open list for fur-

ther exploration.
38: end if

39: end if

40: end for

41: end for

42: Open list =Open list \ Parent node ⊲ Remove the evaluated Parent node from

the Open list
43: end while

OUTPUT: Vehicle target list - The targets assigned to each vehicle and the required visitation order.

Algorithm 1: Task assignment Exhaustive search algorithm (Continue)
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INPUT: Vehicles Configuration, Target position and and Obstacles vertices positions.

1: Target list=Tj : j = 1 . . . NT ⊲ Initialize a list containing targets to be

visited.

2: for (Vi : i = 1 to NV ) do ⊲ Calculate the benefits of all possible

vehicle-target pairs.
3: for (Tj : j = 1 to NT ) do

4: Vehicle-target-path(Vi ,Tj)=Path Length(Vi,Tj)

5: Vehicle-target-benefit(Vi ,Tj)=Benefit function(Vehicle-target-path(Vi ,Tj))

6: end for

7: end for

8: [Vi,Tj ] ← max(Vehicle-target-benefit(Vi ,Tj)) ⊲ Find the pair with the highest benefit

value.

9: Vehicle target list(Vi)=[Vehicle target list(Vi), Tj ] ⊲ Add the target to the vehicle assigned

targets list.

10: Target list=Target list\Tj ⊲ Remove the target from the target list.

11: Vehicle position(Vi)=Target position(Tj) ⊲ Update the vehicle position.

12: Vehicle path(Vi)=Vehicle path(Vi)

+ Vehicle-target-Path(Vi ,Tj) ⊲ Calculate the overall distance traveled by

the vehicle .

13: Total benefit=max(Vehicle-target-benefit(Vi,Tj)) ⊲ Store the accumulated benefit.

Algorithm 2: Task assignment Greedy search algorithm
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14: while Target list 6= ∅ do ⊲ Repeat the process until all targets have

been visited.

15: for (Vi : i = 1 to NV ) do ⊲ Calculate the benefits of all possible

vehicle-target pairs.
16: for (Tj ∈ Target list) do

17: Vehicle-target-path(Vi ,Tj)=Path Length(Vi,Tj) + Vehicle path(Vi)

18: Vehicle-target-benefit(Vi ,Tj)=Benefitfunction(Vehicle-target-path(Vi ,Tj))

+ Total benefit

19: end for

20: end for

21: [Vi,Tj ] ← max(Vehicle-target-benefit(Vi ,Tj)) ⊲ Find the pair with the highest benefit

value.

22: Vehicle target list(Vi)=[Vehicle target list(Vi), Tj ] ⊲ Store the vehicle assigned target.

23: Target list=Target list\Tj ⊲ Remove the target from the target list.

24: Vehicle position(Vi)=Target position(Tj) ⊲ Update the vehicle position.

25: Vehicle path(Vi)=Vehicle path(Vi)

+ Vehicle-target-path(Vi ,Tj) ⊲ Calculate the overall distance traveled by

the vehicle.

26: Total benefit=max(Vehicle-target-benefit(Vi ,Tj)) ⊲ Store the accumulated benefit.

+ Total benefit

27: end while

OUTPUT: Vehicle target list - The targets assigned to each vehicle and the required visitation order.

Algorithm 2: Task assignment Greedy search algorithm (Continue)
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Figure 3.3: General scenario - 2 Vehicles and 4 Targets among obstacles

Figure # Algorithms used
Initial
Benefit

Acquired
Benefit

Lost
Benefit

Overall
Distance

Solution
Time[sec]

3.3a

Exhaustive
TA
Exhaustive
MP

21000 9814 11186 1930 58.1

3.3b
Greedy TA
Heuristic MP

21000 9397 11603 2438 1.05

3.3c
Exhaustive
TA Heuristic
MP

21000 9814 11186 1930 17.3

Table 3.1: Different Initial Benefits Scenario

algorithms (Figure 3.3b), the lowest benefit (highest cost) and shortest running time are attained.
The solution presented in Figure 3.3a shows that the vehicles are generally first heading towards
targets with high priority while taking into account targets with lower priority. Since the benefit
diminishes with time, the vehicle does not head directly towards the high priority targets but also
passes through low priority targets which are closer to its location (upper vehicle on Figure 3.3a).
In Figure 3.3b the upper vehicles head directly to target 6 (initial benefit value=6) and skip target
1 since in this case the task assignment algorithm is greedy by nature. In the scenarios presented in
sections 3.4.2 and 3.4.3 the exhaustive algorithms’ setup yields the same results as the exhaustive
task assignment algorithm and heuristic motion planning algorithm setup, therefore only latter
setup is presented. Even though the results presented in these sections are identical, it can be
shown that in certain cases the exhaustive algorithms’ setup provides better results however, the
solution running time becomes longer.
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(c) Exhaustive Task assignment al-
gorithm; Exhaustive Motion plan-
ning algorithm; Minimize the sum
of the overall distance travelled

Figure 3.4: Equal Benefits scenario - 2 Vehicles and 4 Targets among obstacles

3.4.2 Equal Benefit Scenario

The scenario shown in Figure 3.4 is similar to the scenario shown in Figure 3.3, only the targets’
initial benefit is equal. Since the targets’ priority is identical, we expect the results to be similar
to the case where the cost function objective is to minimize the overall distance travelled by
the vehicles (Equation 3.10). In the results summarized in table 3.2, the highest benefit (lowest
cost) is obtained by the setup of the exhaustive task assignment algorithm (Figure 3.4b). The
overall distance is the same as in the case of using the cost function which minimizes the sum
of the distance travelled (Figure 3.4c), as we expected. As in the previous scenario, the solution
running time has the same tendency, when using a greedy and heuristic algorithms’ combination
the shortest running time is gained and with an exhaustive algorithms combination the longest
running time is gained. This tendency remains the same through all the presented scenarios.

3.4.3 Comparing Exhaustive and Greedy Task Assignment Algorithms

A scenario of 4 targets and 2 vehicles is presented in Figure 3.5. The results of the scenario
(table 3.3) support the claim that the exhaustive algorithm always provides better or equal results
compared to the greedy algorithm. This can be seen in table 3.1 and table 3.4 as well. The main
advantage of the greedy algorithm is its low computational time, which makes it suitable to real
time applications. In cases where both the exhaustive task assignment algorithms and the motion
planning algorithm are used, the best solution coded in the tree is obtained and the lowest cost
assignments allocation and vehicles’ paths are provided.

3.4.4 Benefit Time Dependency

A simple scenario of one vehicle and two targets (initial benefit of 10 and 5) is used in Figure 3.6 and
Figure 3.7. The time dependency can be easily explained using this two scenarios, in Figure 3.6
the vehicle’s path passes through target 5 even though it causes the vehicle to extend its path
toward target 10. This happens because the time it takes to get to target 5 is very short compared
to target 10, and in order to minimize the ”lost benefit” of the two targets it is better to first pass
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Figure # Algorithms used
Initial
Benefit

Acquired
Benefit

Lost
Benefit

Overall
Distance

Solution
Time[sec]

3.4a
Greedy TA
Heuristic MP

4000 1399 2601 3353 1.3

3.4b
Exhaustive
TA Heuristic
MP

4000 1623 2377 2075 73.7

3.4c

Exhaustive
TA Heuristic
MP (Sum of
path length
cost function-
Eq. 3.10)

4000 1623 2377 2075 73.7

Table 3.2: Equal Initial Benefits Scenario
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Figure 3.5: Comparison Between Exhaustive and Greedy Task Assignment Algorithms
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Figure # Algorithms used
Initial
Benefit

Acquired
Benefit

Lost
Benefit

Overall
Distance

Solution
Time[sec]

3.5a
Greedy TA
Heuristic MP

24000 10027 13973 2514 0.9

3.5b
Exhaustive
TA Heuristic
MP

24000 13504 10496 1487 13.6

Table 3.3: Comparing Exhaustive and Greedy Task Assignment Algorithms
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Figure 3.6: Scenario 1 - Exhaustive TA ; Exhaustive MP and Greedy TA ; Heuristic MP

through target 5. In Figure 3.7, however, the time it takes to get to target 5 is still shorter than
the time it takes to get to target 10 but since target 10 is now located closer to the vehicle it is
better to first pass though target 10. These two scenarios demonstrate how the arrival time of the
vehicle to each target influences the task assignment process. In both of these small sized simple
cases the greedy algorithm provides an identical result to the exhaustive algorithm’s result and
the vehicle’s path remains the same.

3.4.5 Benefit Descent Rate

The scenario of two targets and one vehicle presented in Figure 3.8 helps illustrate the influence
of the descent rate on the obtained results. In this scenario, the time it takes the vehicle to get to
target 3 is 200 [sec] from its initial position and the time it takes the vehicle to get to target 10 is
500 [sec] from the same position. By increasing the value of the descent rate, the benefit rapidly
diminishes as time progresses. In Figure 3.8b the descent rate is increased by 5 times compared to
Figure 3.8a, which causes the change in the vehicle assignments’ order. Before the increase of the
descent rate, the benefit of target 10 is significantly higher than that of target 3 (upper red bullet
compared to lower red bullet in Figure 3.1a) but after the descent rate is increased, the targets
have similar benefits (as can be seen by the red bullets’ vertical position in Figure 3.1b). Since the
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Figure 3.7: Scenario 2 - Exhaustive TA ; Exhaustive MP and Greedy TA ; Heuristic MP

Figure # Algorithms used
Initial
Benefit

Acquired
Benefit

Lost
Benefit

Overall
Distance

3.6

Exhaustive
TA
Exhaustive
MP

15000 6571 8529 1371

3.6
Greedy TA
Heuristic MP

15000 6571 8529 1371

3.7

Exhaustive
TA
Exhaustive
MP

15000 6634 8366 1333

3.7
Greedy TA
Heuristic MP

15000 6634 8366 1333

Table 3.4: Scenario 1 & Scenario 2
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Figure 3.8: Benefit Decent Rate

Figure # Algorithms used
Initial
Benefit

Acquired
Benefit

Lost
Benefit

Overall
Distance

3.8a

Exhaustive
TA
Exhaustive
MP

13000 6528 6472 1414

3.8b

Exhaustive
TA
Exhaustive
MP

13000 1004 11996 1063

Table 3.5: Benefit Decent Rate

benefit that the vehicle can gather in target 10 is smaller than the one in target 3, it is preferable
to change the targets’ visitation order as can be seen in Figure 3.8b. The results summarized in
table 3.5 emphasize the influence of the descent rate as the benefit acquired in Figure 3.8a is much
higher than the one in Figure 3.8b. The benefit decent rate does not only influence the benefit
gathered but may also influence the assignments’ order as presented above.

Appendix

The task assignment algorithm uses a motion planning subroutine. The motion planning sub-
routine includes two types of algorithms. These algorithms are based on a search process that
explores the tree described in section 3.2. The two algorithms are described next, an exhaustive
search algorithm that finds the minimum cost branch, and a heuristic greedy algorithm that finds
a feasible solution in a shorter computational time.
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Heuristic motion planning algorithm

Given a set of ordered targets, vehicle’s initial configuration and the obstacles’ vertices position,
the algorithm performs an A*-like greedy search based on Euclidean distances heuristics. The
algorithm steps are as follows:

1. The vehicle is assumed to be located and oriented according to the initial configuration. The

first target is set to be the current target.

2. Calculate an obstacles free relaxed path connecting the vehicle’s current configuration and

the current target. If such a path exist skip to step 7.

3. Calculate an obstacles free relaxed paths, connecting the current configuration and all of the

the obstacles vertices.

4. Find the vertex with the following property: the sum of the relaxed path length (connecting

the vertex and the vehicle’s current configuration) and the Euclidean distance (connecting

the vertex and the current target) is minimum.

5. The vehicle is assumed to be located at the vertex with the described property and the

orientation angle becomes the vertex arrival angle.

6. Return to step 2.

7. The vehicle is assumed to be located at the current target and the orientation angle is set to

be the arrival angle.

8. The next target to visit on the targets’ set becomes the current target.

9. Repeat steps 2 - 8 until the entire targets’ set is visited.

The algorithm output is a vehicle trajectory, represented by an ordered set of nodes (including
targets and obstacles’ vertices) that need to be visited using relaxed paths.

Exhaustive motion planning algorithm

The algorithm explores every branch of the search tree and evaluates every possible visit order
sequence in order to find the minimum cost branch. The algorithm’s input is a set of ordered
targets, vehicle’s initial configuration and the obstacles’ vertices position. The algorithm steps are
as follows:

1. Calculate the initial upper bound, using the heuristic algorithm.
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2. An OPEN list is generated to store the nodes that will be examined as the next node to

visit.

3. The initial configuration is entered to OPEN as a node.

4. The node with the lowest cost in OPEN (relaxed path connecting the initial configuration

and the node) is selected as the current node.

5. The neighbors of the current node that can come after it in the visit order are examined.

Their estimated distance is calculated. It is defined as the sum of the following:

(a) Cost of the selected node.

(b) Relaxed path connecting the selected node and the neighbor.

(c) Euclidean distance between the neighbor and the current target to visit.

(d) The total Euclidean distance which connects the current target and the remaining tar-

gets to visit in the targets’ set in the required order.

6. The neighbors with an estimated distance which is lower than the current upper bound are

added to OPEN as new nodes.

7. All of the new nodes added to OPEN are examined.

(a) In case a new node is the next target to visit, the target is marked as visited in the

current explored branch.

(b) In case a new node is the last target to visit and the entire targets’ set is visited in the

required order, a leaf node of the branch is reached and the entire branch is explored.

i. The upper bound is updated to the relaxed path total length described by the nodes

in the branch and the visit order of the nodes is stored.

8. The current node is removed from OPEN since all the neighbors have been evaluated.

9. This process is repeated until the OPEN list is empty.

The algorithm output is identical to the heuristic algorithm output described above.
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